
Stochastic Gradient Descent

Jue Guo

December 9, 2024

1 Stochastic Gradient Update

In deep learning, the objective function is usually the average of the loss functions for each example in the training dataset.
Given a training dataset of n examples, we assume that fi(x) is the loss function with respect to the training example of
index i, where x is the parameter vector. Then we arrive at the objective function

f(x) =
1

n

n∑
i=1

fi(x)

The gradient of the objective function at x is computed as

∇f(x) = 1

n

n∑
i=1

∇fi(x)

If gradient descent is used, the computational cost for each independent variable iteration is O(n), which grows linearly
with n. Therefore, when the training dataset is larger, the cost of gradient descent for each iteration will be higher.

Stochastic gradient descent (SGD) reduces computational cost at each iteration. At each iteration of stochastic
gradient descent, we uniformly sample an index i ∈ {1, . . . , n} for data examples at random, and compute the gradient
∇fi(x) to update x :

x← x− η∇fi(x)

where η is the learning rate. We can see that the computational cost for each iteration drops from O(n) of the gradient
descent to the constant O(1). Moreover, we want to emphasize that the stochastic gradient ∇fi(x) is an unbiased estimate
of the full gradient ∇f(x) because

Ei∇fi(x) =
1

n

n∑
i=1

∇fi(x) = ∇f(x)

This means that, on average, the stochastic gradient is a good estimate of the gradient.

Why is Stochastic Gradient Unbiased? The stochastic gradient ∇fi(x) that you compute for a single data point i
is a good approximation of the full gradient ∇f(x) that you would compute over the entire dataset.

In other words, while the gradient you compute from a single data point ∇fi(x) might vary from the true full gradient
∇f(x), on average, across many iterations, these stochastic gradients will give you the correct direction for optimization.

As we can see from figure 1, the trajectory of the variables in the stochastic gradient descent is much more noisy than the
one we observed in gradient descent. This is due to the stochastic nature of the gradient. That is, even when we arrive near
the minimum, we are still subject to the uncertainty injected by the instantaneous gradient via η∇fi(x).



(a) Gradient Descent (b) Stochastic Gradient Descent

Figure 1: GD vs SGD

2 Dynamic Learning Rate

Even after 50 steps the quality is still not so good. Even worse, it will not improve after additional steps. This leaves us
with the only alternative: change the learning rate η. However, if we pick this too small, we will not make any meaningful
progress initially. On the other hand, if we pick it too large, we will not get a good solution, as seen above. The only way to
resolve these conflicting goals is to reduce the learning rate dynamically as optimization progresses.

How rapidly η should decay?

η(t) = ηi if ti ≤ t ≤ ti+1 piecewise constant

η(t) = η0 · e−λt exponential decay

η(t) = η0 · (βt+ 1)−α polynomial decay

In the first piecewise constant scenario we decrease the learning rate, e.g., whenever progress in optimization stalls.
This is a common strategy for training deep networks. Alternatively we could decrease it much more aggressively by an
exponential decay. Unfortunately this often leads to premature stopping before the algorithm has converged. A popular
choice is polynomial decay with α = 0.5. In the case of convex optimization there are a number of proofs that show that this
rate is well behaved. The behavior of the learning rate decay approahes can be seen in figure 2

(a) exponential decay (b) polynomial decay

Figure 2: exponential decay vs polynomial decay

3 Convergence Analysis for Convex Objectives

Can you perform convergence analysis on stochastic gradient descent for convex objective function? Suppose that the objective
function f(ξ,x) is convex in x for all ξ. More concretely, we consider the stochastic gradient decent update:

xt+1 = xt − ηt∂xf (ξt,x)

2



where f (ξt,x) is the objective function with respect to the training example ξt drawn from some distribution at step t and
x is the model parameter. Denote by

R(x) = Eξ[f(ξ,x)]

the expected risk and by R∗ its minimum with regard to x. Last let x∗ be the minimizer (we assume that it exists within
the the domain where x is defined). In this case we can track the distance between the current parameter xt at time t and
the risk minimizer x∗ and see whether it improves over time:

∥xt+1 − x∗∥2

= ∥xt − ηt∂xf (ξt,x)− x∗∥2

= ∥xt − x∗∥2 + η2t ∥∂xf (ξt,x)∥
2 − 2ηt ⟨xt − x∗, ∂xf (ξt,x)⟩

(1)

We assume, control the size of the gradient and ensure the update step does not get too large, that the l2 norm of
stochastic gradient ∂xf (ξt,x) is bounded by some constant L, hence we have that

η2t ∥∂xf (ξt,x)∥
2 ≤ η2tL

2

We are mostly interested in how the distance between xt and x∗ changes in expectation. In fact, for any specific sequence
of steps the distance might well increase, depending on whichever ξt we encounter. Hence we need to bound the dot product.
Since for any convex function f it holds that f(y) ≥ f(x) + ⟨f ′(x),y − x⟩ for all x and y, by convexity we have

f (ξt,x
∗) ≥ f (ξt,xt) + ⟨x∗ − xt, ∂xf (ξt,xt)⟩

Clarification f(y) ≥ f(x) + ⟨f ′(x),y − x⟩, the function f(y) is at least as large as the value of the function at x, plus the
linear approximation (tangent plane) around x. This inequality holds for all x and y.

Now we have to rearrange the equation to satisfy the objective, ⟨x∗ − xt, ∂xf (ξt,xt)⟩ ≤ f (ξt,x
∗)− f (ξt,xt). Substitute

into the third term of e.q.1:
−2ηt ⟨xt − x∗, ∂xf (ξt,xt)⟩ ≤ −2ηt (f (ξt,xt)− f (ξt,x

∗))

we have:
∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 − 2ηt (f (ξt,xt)− f (ξt,x

∗)) + η2tL
2

rearrange,
∥xt − x∗∥2 − ∥xt+1 − x∗∥2 ≥ 2ηt (f (ξt,xt)− f (ξt,x

∗))− η2tL
2 (2)

This means that we make progress as long as the difference between current loss and the optimal loss outweighs ηtL
2/2.

Since this difference is bound to converge to zero it follows that the learning rate ηt also needs to vanish.

Now we want to take the expectation over e.q.2

E
[
∥xt − x∗∥2

]
− E

[
∥xt+1 − x∗∥2

]
≥ 2ηt [E [R (xt)]−R∗]− η2tL

2

doing so, we eliminate the randomness due to the stochastic sampling of the gradient. We now sum the inequality for all t
from 1 to T . The left-hand side becomes a telescoping sum:

T∑
t=1

(
E
[
∥xt − x∗∥2

]
− E

[
∥xt+1 − x∗∥2

])
Notice that in this sum, most of the terms cancel out. Here’s how it works:

1. When you expand the sum, you get:
(
E
[
∥x1 − x∗∥2

]
− E

[
∥x2 − x∗∥2

])
+
(
E
[
∥x2 − x∗∥2

]
− E

[
∥x3 − x∗∥2

])
+ · · ·+(

E
[
∥xT − x∗∥2

]
− E

[
∥xT+1 − x∗∥2

])
2. Most of the terms cancels out, after all the cancellation, only two terms remain: E

[
∥x1 − x∗∥2

]
− E

[
∥xT+1 − x∗∥2

]

3



Now, since xT+1 is close to the optimal solution as T increases, we can ignore this term (or assume it converges to a small
value). Thus, we have:

∥x1 − x∗∥2 ≥ 2

(
T∑

t=1

ηt

)
[E [R (xt)]−R∗]− L2

T∑
t=1

η2t (3)

Note that we exploited that x1 is given and thus the expectation can be dropped. Last define (averaging the iteration
tends to stabilize the solution and improve convergence behavior)

x
def
=

∑T
t=1 ηtxt∑T
t=1 ηt

Since, now consider the risk over the iterations,

E

(∑T
t=1 ηtR (xt)∑T

t=1 ηt

)
=

∑T
t=1 ηtE [R (xt)]∑T

t=1 ηt
= E [R (xt)]

From Jensen’s inequality, E [R (xt)] ≥ E[R(x)], meaning the expected of each risk added and averaged is greater than the
risk of average value, thus

R(x) ≤
∑T

t=1 ηtR (xt)∑T
t=1 ηt

apply expectation on both side

E[R(x)] ≤ E

[∑T
t=1 ηtR (xt)∑T

t=1 ηt

]
then,

E[R(x)] ≤
∑T

t=1 ηtE [R (xt)]∑T
t=1 ηt

Finally,
T∑

t=1

ηtE [R (xt)] ≥
T∑

t=1

ηtE[R(x)]

plugging it into e.q.3, we have

∥x1 − x∗∥2 ≥ 2

T∑
t=1

ηt (E[R(x)]−R∗)− L2
T∑

t=1

η2t

we want to isolate E[R(x)]−R∗,

2

T∑
t=1

ηt (E[R(x)]−R∗) ≤ ∥x1 − x∗∥2 + L2
T∑

t=1

η2t

Divide both sides by 2
∑T

t=1 ηt to isolate E[R(x)]−R∗:

E[R(x)]−R∗ ≤
∥x1 − x∗∥2 + L2

∑T
t=1 η

2
t

2
∑T

t=1 ηt

In the next step, we define r2 = ∥x1 − x∗∥2, which is a constant representing the initial distance between the first iterate x1

and the optimal solution x∗. So the bound becomes:

E[R(x)]−R∗ ≤
r2 + L2

∑T
t=1 η

2
t

2
∑T

t=1 ηt

• r2 is the initial squared distance between x1 and the optimal solution x∗.

• L2
∑T

t=1 η
2
t represents the effect of the stochastic gradient noise over time. The bound depends on how the learning

rates ηt scale.

4



• The denominator 2
∑T

t=1 ηt reflects how much total progress the algorithm makes as a function of the learning rates.

We want to 1). maximize
∑T

t=1 ηt : This represents the cumulative progress made by the algorithm. Larger values of ηt
mean faster progress, and 2). minimize

∑T
t=1 η

2
t : This term grows if the learning rate is too large, leading to instability in

the updates (overshooting the optimal solution).

The learning rate η = r
L
√
T

is intuitive because it starts large (when we are far from the solution) and shrinks as we get

closer (as T grows). This mirrors how we would like an optimization process to behave: aggressive updates early on, and
fine-tuning near the end. Now we have

E[R(x)]−R∗ ≤
r2 + L2 · r2

L2

2 · r
√
T

L

=
2r2

2 · r
√
T

L

=
rL√
T

That is, we converge with rate O(1/
√
T ) to the optimal solution.

5


